Bayesian Group Testing with Dilution Effects

Biostatistics, 2022  (kxac004)

Curtis Tatsuoka, Weicong Chen, Xiaoyi Lu

Abstract

A Bayesian framework for group testing under dilution effects has been developed, using lattice-based models. This work has particular relevance given the pressing public health need to enhance testing capacity for coronavirus disease 2019 and future pandemics, and the need for wide-scale and repeated testing for surveillance under constantly varying conditions. The proposed Bayesian approach allows for dilution effects in group testing and for general test response distributions beyond just binary outcomes. It is shown that even under strong dilution effects, an intuitive group testing selection rule that relies on the model order structure, referred to as the Bayesian halving algorithm, has attractive optimal convergence properties. Analogous look-ahead rules that can reduce the number of stages in classification by selecting several pooled tests at a time are proposed and evaluated as well. Group testing is demonstrated to provide great savings over individual testing in the number of tests needed, even for moderately high prevalence levels. However, there is a trade-off with higher number of testing stages, and increased variability. A web-based calculator is introduced to assist in weighing these factors and to guide decisions on when and how to pool under various conditions. High-performance distributed computing methods have also been implemented for considering larger pool sizes, when savings from group testing can be even more dramatic.

Full text links

External link

Journal Article

Journal
Biostatistics
Month
04
Issn
1465-4644
Doi
10.1093/biostatistics/kxac004
Note
kxac004
Eprint
https://academic.oup.com/biostatistics/advance-article-pdf/doi/10.1093/biostatistics/kxac004/43355708/kxac004.pdf
Series
Biostatistics '22

Cite

Plain text

BibTeX