MR-Advisor: A comprehensive tuning, profiling, and prediction tool for MapReduce execution frameworks on HPC clusters

Journal of Parallel and Distributed Computing, 2018

Md. Wasi-ur- Rahman, Nusrat Sharmin Islam, Xiaoyi Lu, Dipti Shankar, Dhabaleswar K. (DK) Panda

Abstract

MapReduce is the most popular parallel computing framework for big data processing which allows massive scalability across distributed computing environment. Advanced RDMA-based design of Hadoop MapReduce has been proposed that alleviates the performance bottlenecks in default Hadoop MapReduce by leveraging the benefits from RDMA. On the other hand, data processing engine, Spark, provides fast execution of MapReduce applications through in-memory processing. Performance optimization for these contemporary big data processing frameworks on modern High-Performance Computing (HPC) systems is a formidable task because of the numerous configuration possibilities in each of them. In this paper, we propose MR-Advisor, a comprehensive tuning, profiling, and prediction tool for MapReduce. MR-Advisor is generalized to provide performance optimizations for Hadoop, Spark, and RDMA-enhanced Hadoop MapReduce designs over different file systems such as HDFS, Lustre, and Tachyon. Performance evaluations reveal that, with MR-Advisor’s suggested values, the job execution performance can be enhanced by a maximum of 58

Full text links

External link

Journal Article

Journal
Journal of Parallel and Distributed Computing
Volume
120
Pages
237 - 250
Issn
0743-7315
Doi
https://doi.org/10.1016/j.jpdc.2017.11.004
Series
JPDC '18

Cite

Plain text

BibTeX